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Abstract. The discovery of high utility itemsets (HUIs) is an attractive topic in
data mining. Because of its high computational cost, using heuristic methods is
a promising approach to rapidly discovering sufficient HUIs. The artificial fish
swarm algorithm is a heuristic method with many applications. Except the current
position, artificial fish do not record additional previous information, as other
related methods do. This is consistent with the HUI mining problem: that the
results are not always distributed around a few extreme points. Thus, we study
HUImining from theperspective of the artificial fish swarmalgorithm, andpropose
an HUI mining algorithm called HUIM-AF. We model the HUI mining problem
with three behaviors of artificial fish: follow, swarm, and prey. We explain the
HUIM-AF algorithm and compare it with two related algorithms on four publicly
available datasets. The experimental results show that HUIM-AF can discover
more HUIs than the existing algorithms, with comparable efficiency.

Keywords: Data mining · Artificial fish swarm algorithm · High utility itemset ·
Position vector

1 Introduction

High utility itemsets (HUIs) are extensions of frequent itemsets (FIs) that consider both
the unit profit and frequency of occurrence. HUImining (HUIM) [2] is an active research
topic in data mining, and various algorithms [6, 11] for it have been proposed. In contrast
to the support measure (which is used in FI mining), utility (used in HUIM) does not
satisfy the downward closure property. Hence, the computational cost of HUIM is high.
Furthermore, for application fields such as recommender systems, it is not necessary to
use all HUIs [13].

To reduce the burden of HUIM, heuristic methods—such as genetic algorithm (GA)
[3] and particle swarm optimization (PSO) [5]—have been used for HUIM, to discover
acceptable itemsets within a reasonable time. For these algorithms, HUIs are discovered
iteratively, and results of one iteration affect the HUIs discovered in the next iteration.
Thus, the resulting HUIs tend to be clustered around certain itemsets after many itera-
tions, and the number of results is limited if no new individuals are generated randomly.
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It was also verified in [9] that diversity is of great importance for generating a greater
number of HUIs in a smaller number of iterations.

In contrast to GA, PSO, and other heuristic methods that are used for HUIM, the
artificial fish swarm algorithm (AFSA) only records the current position, but not other
previous information, of each artificial fish (AF). This approach is essentially consistent
with the problem of HUIM with a large number of diverse results. Therefore, in this
paper, we use the AFSA to formulate an HUIM algorithm. The experiments show that
the proposed algorithm can discover more HUIs than two other related algorithms.

2 Preliminaries

2.1 HUIM Problem

Let I = {i1, i2, …, im} be a finite set of items; each set X ⊆ I is called an itemset. Let
D = {T1, T2, …, Tn} be a transaction database. Each transaction Td ∈ D, with unique
identifier d, is a subset of I.

The internal utility q(ip, Td) represents the quantity of item ip in transaction Td .
The external utility p(ip) is the unit profit value of ip. The utility of ip in Td is
defined as u(ip, Td) = p(ip) × q(ip, Td). The utility of itemset X in Td is defined
as u(X ,Td ) = ∑

ip∈X∧X⊆Td
u
(
ip,Td

)
. The utility of X in D is defined as u(X ) =

∑
X⊆Td∧Td∈D u(X ,Td ). The transaction utility (TU) of transaction Td is defined as

TU(Td) = u(Td , Td). The minimum utility threshold δ, specified by the user, is a per-
centage of the total TU values of the database, and the minimum utility value min_util
= δ × ∑

Td∈D TU (Td ). An itemset X is called an HUI if u(X) ≥ min_util. Given a
transaction database D, the task of HUIM is to determine all itemsets whose utility is no
less than min_util.

The transaction-weighted utilization (TWU) of itemset X is the sum of the trans-
action utilities of all the transactions containing X [6], and is defined as TWU (X ) =∑

X⊆Td∧Td∈D TU (Td ). X is a high transaction-weighted utilization itemset (HTWUI) if
TWU(X) ≥ min_util. An HTWUI containing k items is called a k-HTWUI.

Table 1. Example database.

TID Transactions TU

1 (B, 1), (C, 2), (D, 1), (F, 2) 15

2 (A, 4), (B, 1), (C, 3), (D, 1), (E, 1) 18

3 (A, 4), (C, 2), (D,1) 11

4 (C, 2), (D, 1), (E, 1) 11

5 (A, 5), (B, 2), (D, 1), (E, 2) 22

6 (A, 3), (B, 4), (C, 1), (D, 1) 17

7 (D, 1), (E, 1), (F, 1) 12
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Table 2. Profit table.

Item A B C D E F

Profit 1 2 1 5 4 3

As a running example, consider the transaction database in Table 1 and the profit
table in Table 2. For convenience, an itemset {B, E} is denoted by BE. The utility of E
in T2 is u(E, T2) = 4 × 1 = 4, the utility of BE in T2 is u(BE, T2) = 2 + 4 = 6, and the
utility of BE in the example database is u(BE) = u(BE, T2) + u(BE, T5) = 18. Given
min_util = 35, because u(BE) < min_util, BE is not an HUI. The TU of T2 is TU(T2)
= u(ABCDE, T2) = 18; the utility of each transaction is shown in the third column of
Table 1. Because BE is contained in transactions T2 and T5, TWU(BE) = TU(T2) +
TU(T5) = 40; therefore, BE is an HTWUI.

2.2 Basic Principle of AFSA

The AFSA [4], is inspired by the collective movement of fish and their typical social
behaviors. For the AFSA, Ai represents the ith AF. The position of Ai, denoted by Xi =
< xi1, xi2, …, xid >, represents a possible solution. In addition, the food concentration
at position X is denoted by Y = f (X). Let di,j = ||Xi − Xj || be the distance between two
positions, Xi and Xj. An AF located at Xi inspects the search space around it, within its
visual distance (VD). If there is a new position Xj such that di,j ≤ VD and f (Xj) > f (Xi),
the AF moves a step toward Xj. To realize this principle, three behaviors of an AF are
used iteratively.

Preying Behavior. Preying is the behavior whereby a fish moves to a location with the
highest concentration of food. Letting Xi(t) be the current position of the ith AF (Ai) at
time t, the position of Ai randomly selected within the visual distance VD is:

Xj = Xi(t) + VD × rand(). (1)

where rand() produces a random number between 0 and 1. If f (Xj) > f (Xi), Ai moves a
step toward Xj, as follows:

Xi(t + 1) = Xi(t) + S × rand() × Xj − Xi(t)∥
∥Xj − Xi(t)

∥
∥
. (2)

where S is the maximum length of a step that an AF can take at each movement. Oth-
erwise, Ai selects a position Xj randomly again, using Eq. 1, and decides whether it
satisfies the forward condition. If it cannot satisfy it after try_number times, it moves a
step randomly, as follows:

Xi(t + 1) = Xi(t) + VD × rand( ). (3)
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Swarming Behavior. In nature, a swarm of fish tends to assemble, so as to be protected
from danger while avoiding overcrowded areas. Suppose that there are nf AFs within
distance VD of Ai, if the following conditions are satisfied:

{
f (Xc) > f (Xi)

nf
n < δ

. (4)

where n is the total number of AFs, δ ∈ (0, 1) is the crowding factor, and Xc = <

xc1, xc2, …, xcd > is the central position within distance VD of Ai, whose elements are
determined by:

xck =
∑nf

m=1 xmk
/

nf . (5)

where 1 ≤ k ≤ d. This means that there is more food in the center, and the area is not
overcrowded. Thus, Xi(t) moves a step toward the companion center using:

Xi(t + 1) = Xi(t) + S × rand() × Xc − Xi(t)

‖Xc − Xi(t)‖ . (6)

If the conditions in Eq. 4 are not satisfied, the preying behavior is executed instead.

Following Behavior. When a fish finds a location with a higher concentration of food,
other fish follow. Let Xb be the position within distance VD of Ai with the highest food
concentration. That is, for all Xj such that di,j ≤ VD, F(Xj) ≤ f (Xb). If the following
conditions are satisfied:

{
f (Xb) > f (Xi)

nf
n < δ

. (7)

Ai goes forward a step to Xb using:

Xi(t + 1) = Xi(t) + S × rand() × Xb − Xi(t)

‖Xb − Xi(t)‖ . (8)

Otherwise, Ai executes a preying behavior.

3 Related Work

Inspired by biological and physical phenomena, heuristic methods are effective for solv-
ing combinatorial problems. Based on stochasticmethods, heuristicmethods can explore
very large search spaces to find near-optimal solutions. Because HUIM is a task with
high computational cost, heuristic methods are suitable for traversing the very large
search spaces of HUIM within an acceptable time.
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A GA was the first heuristic method used for HUIM, and two HUIM algo-
rithms, HUPEUMU-GARM and HUPEWUMU-GARM, were proposed in [3]. The dif-
ference between them is that the second algorithm does not require a minimum util-
ity threshold. These two algorithms tend to fall into local optima, leading to low
efficiency and fewer mining results. Zhang et al. proposed an HUIM algorithm with
four strategies [14]—neighborhood exploration, population diversity improvement,
invalid combination avoidance, and HUI loss prevention—to improve the algorithm’s
performance.

PSO is another heuristic method used for HUIM. Lin et al. proposed an HUIM
algorithm based on PSO with a binary coding scheme [5]. Song and Li proposed an
HUIM algorithm based on set-based PSO [9]. The main difference is that the concept
of cut set is used in the latter algorithm to improve the diversity of the resulting HUIs.

Other heuristic methods have also been used for HUIM, including an artificial bee
colony (ABC) algorithm [7] and ant colony optimization (ACO) [12]. Furthermore,
heuristic algorithms are also used for mining some other specific HUIs, such as top-k
HUIs [10] and high average-utility itemsets [8].

4 Modeling HUIM Using AFSA

We use a position vector (PV) to represent the position of an AF. Letting HN be the
number of 1-HTWUIs, a PV is represented by an HN-dimensional binary vector, in
which each bit corresponds to one 1-HTWUI. Assuming that all 1-HTWUIs are sorted
in a total order, if the kth 1-HTWUI appears in a PV, then bit k of the PV is set to 1;
otherwise, the bit is set to 0. It is proved in [6] that an item with a TWU value lower
than the minimum utility threshold cannot appear in an HUI. Thus, only 1-HTWUIs are
considered for representation in a PV.

Letting P be a PV, the jth (1≤ j ≤ NH) bit of P is randomly initialized using roulette
wheel selection with the probability:

Pr(P(j)) = TWU
(
ij
)

∑NH
k=1 TWU (ik)

. (9)

In the same manner as other related work [5, 7], we use the utility of the itemset
directly as the object for optimization. Letting X be the itemset corresponding to P,

f (P) = u(X ). (10)
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5 The Proposed HUIM-AF Algorithm

5.1 Algorithm Description

Algorithm 1 describes our HUIM algorithm, HUIM-AF.

In Algorithm 1, the initial population is generated in Step 1. SHUI, the set of discov-
ered HUIs, is initialized as an empty set in Step 2. Step 3 sets the iteration counter to 1.
In the loop in Steps 4–17, each AF performs one of the three behaviors, namely follow,
swarm, or prey, and then the iteration counter is incremented by 1. This procedure of
AFs (performing one action and incrementing the iteration counter) is repeated until
the maximum number of iterations is reached. Here, Pi is the PV of Ai in the current
population. Finally, Step 18 outputs all discovered HUIs. The procedures for follow,
swarm, and prey are described in Algorithms 2, 3, and 4, respectively.
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InAlgorithm 2, describing the follow behavior, Steps 1–7 determine the best PV (that
with the highest utility value) within distance VD of the enumerating PV. If the best PV
discovered is different from the enumerating PV itself, Step 10 sets the follow variable
and Steps 11–12 update the enumerating PV by bitwise complement within the bits that
are different from the best PV. The operation in Steps 3 and 8, used for calculating the
difference between two PVs, is defined as:

BitDiff (Pi,Pj) = ∣
∣
{
n|Pi(n) ⊕ Pj(n) = 1

}∣
∣, (11)

where Pi(n) is the nth bit of Pi, ⊕ is the exclusive disjunction operation, and |S| denotes
the number of elements in a set S. According to Eq. 11, the distance between two PVs
is represented by the number of their corresponding bits that have different values. If
the updated PV has a utility value that is no lower than the minimum threshold, and it is
not recorded as an HUI, it is stored in Steps 13–15. The function IS(P) returns itemset
X including the items whose corresponding bit in P is one.
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In Algorithm 3, describing the swarm behavior, two binary arrays for determining
the center PV, within distance VD of the enumerating PV, are initialized in Steps 1–4.
The same two arrays are then updated in the loop in Steps 5–13. According to these
two arrays, the center PV is determined in the loop in Steps 14–20. If the center PV
represents an HUI that has not been discovered before, this HUI is recorded in Steps
21–23. If the center PV has a higher utility than the current PV, the swarm variable is
set in Step 25. In addition, the current PV is updated according to the center PV in Steps
26–28. If the updated PV represents an HUI that has not been discovered before, this
HUI is recorded in Steps 29–31.
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In Algorithm 4, describing the prey behavior, a flag parameter, representing whether
a better position can be found within try_number, is initialized to false in Step 1. The
number of tries is then initialized to 1 in Step 2. The loop in Steps 3–15 generates new
HUIs and updates the current position by trying at most try_number times. If no better
positions are found in this loop, the current PV is changed by using a bitwise complement
operation randomly on several of its bits in Step 17. If the new PV representing an HUI
is not discovered before, it is stored in Step 19.

5.2 An Illustrative Example

We use the transaction database in Table 1 and profit table in Table 2 to explain the
algorithm. Given min_util = 35, because TWU(F) < min_util, item F is deleted from
transactions T1 and T7. Thus, the PV of an AF is a five-dimensional binary vector, in
which the first five bits represent A, B, C, D, and E, respectively.

Assume that the size of the population N is 5 and the visual distance VD is 3.
According to Eq. 9, five PVs are generated randomly: P1 = <10110>, P2 = <11010>,
P3 = <10111>, P4 = <11001>, and P5 = <00001>.

Considering P1, it first performs the follow behavior, in which it is also initialized
as Best_AF. The PVs within P1’s visual distance are determined to be P1, P2, and P3.
According toEq. 10, f (P1)= 32, f (P2)= 41, and f (P3)= 16, soBest_AF =P2.Accord-
ing to Eq. 11, dis’ = BitDiff (Best_AF, P1) = 2, so is_follow is set to true. Because the
second and third bits of P1 are different from the corresponding bits of Best_AF, one of
these two bits (e.g., the third bit) is randomly changed to update the newP1 to< 10010>,
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which represents the itemset AD. Because u(AD) > min_util, SHUI = {AD}. Because
the first PV performs the follow behavior, the other two behaviors (swarm and prey) are
not performed in this iteration.

In the same iteration, the other four PVs are processed similarly. The next iteration
then starts to process each PV to discover HUIs until the maximal number of iterations
is reached.

6 Performance Evaluation

In this section, we evaluate the performance of our HUIM-AF algorithm and compare
it with the HUPEUMU-GARM [3] and HUIM-BPSOsig [5] algorithms. We downloaded
the source code of the two comparison algorithms from the SPMF data mining library
[1].

6.1 Test Environment and Datasets

The experiments were performed on a computer with a 4-core 3.20 GHz CPU and 4 GB
memory running 64-bit Microsoft Windows 7. Our programs were written in Java. Four
real datasets were used to evaluate the performance of the algorithms. The characteristics
of the datasets are presented in Table 3.

Table 3. Characteristics of the datasets used for the experimental evaluations.

Datasets Avg. trans.
length

No. of items No. of trans

Chess 37 76 3,196

Mushroom 23 119 8,124

Accidents_10% 34 469 34,018

Connect 43 130 67,557

The four datasets were also downloaded from the SPMF data mining library [1].
The Chess and Connect datasets originate from game steps. The Mushroom dataset
contains various species of mushrooms, and their characteristics. The Accidents dataset
is composed of (anonymized) traffic accident data. Similarly to the work of Lin et al.
[5], the dataset used for the Accidents_10% experiments contained only 10% of the total
dataset.

For all experiments, the population size was set to 20, try_number was set to 3, and
the termination criterion was set to 10,000 iterations. Furthermore, VDwas set to a value
specific to each dataset, by:

VD = 	0.1 × NH
 + 1, (12)

where 	0.1 × NH
 denotes the largest integer that is less than or equal to (0.1 × NH).
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6.2 Execution Time

First, we demonstrate the performance of these algorithms. When measuring the
execution time, we varied the minimum utility threshold for each dataset.
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Fig. 1. Execution times for the four datasets.

We can observe from Fig. 1 that the execution time of the proposed HUIM-AF was
comparable to that of the other two algorithms. Specifically, it was always faster than the
other two algorithms on the Mushroom dataset, whereas its speed was lower than that of
the other two algorithms on the Connect dataset. On the Accidents_10% dataset, HUIM-
AF was faster than the other two algorithms except when the minimum utility threshold
was 12.6%. On the Chess dataset, HUIM-AF was slower than HUPEUMU-GARM and
comparable to HUIM-BPSOsig. The main reason for the speed of HUIM-AF is that the
PVs within distance VD of the enumerating PV always need to be determined, which
incurs a relatively high computational cost.

6.3 Number of Discovered HUIs

Because HUIM algorithms based on heuristic methods cannot ensure the discovery of all
itemsets within a certain number of cycles, we compared the number of HUIs discovered
by each of the three algorithms. The results are shown in Fig. 2.

In contrast to the results on efficiency, HUIM-AF always discovered more HUIs than
the other twoalgorithms. In particular, therewere cases inwhichbothHUPEUMU-GARM
and HUIM-BPSOsig could not find any results on the Mushroom or Accidents_10%
datasets. For example, in the Mushroom dataset, HUPEUMU-GARM could not find any
results when the minimum thresholds were 15% and 16%, and the same occurred for
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Fig. 2. Number of discovered HUIs for the four datasets.

HUIM-BPSOsig when the minimum threshold was 15.5%. The superiority of HUIM-
AF was also demonstrated on Accidents_10% when the threshold was 12.6%. Figure 1
shows that HUIM-BPSOsig was faster than HUIM-AF; however, we can observe from
Fig. 2 that HUIM-BPSOsig could not find any results for this threshold.

These experiments show that the AFSA can leap over local optima effectively, so it
is more suitable for the HUIM problem because there are multiple targets to optimize.

7 Conclusions

In this paper, we propose an HUIM algorithm following the AFSA paradigm. We for-
mally model the problem in which AFs have three behaviors, and describe the algorithm
in detail, with an example. Our experimental results show that the AFSA can discover
more HUIs than two other heuristic methods. Our future work includes the design of
effective pruning strategies to make this type of algorithm more efficient.
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